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7.0 OBJECTIVES 
After going through this unit, you should be able to: 
• identify the dynamics problems in economics; and 
• use the mathematical tools of differential equation to solve problems 

related to economic theory. 

7.1 INTRODUCTION 

Events that change over time are put under the purview of dynamic analysis. 
In this unit, we introduce a framework for dealing with dynamic economic 
problems by introducing time explicitly into these. For that purpose, let us 
start with the mathematical techniques of integral calculus and differential 
equations.  

7.2 DYNAMICS AND INTEGRATION 

In a dynamic economics model, the basic objective is the identification of the 
time path of the variable on the basis of its rate of change. For example, 
national income y of a country changes overtime. To see the rate of change we 
need to see its change with respect to time and to find the time path followed 

by y. Thus, if we know the derivative dy
dt

, it will be possible to get onto the 

function like ( )y y t= through the technique of integration which happens to 
be opposite of the process of differentiation. We will return to this process 
after a while.  
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The dynamic exercises are usually carried on with the aid of differential and 
difference equations. By taking ‘time’ as the independent variable, an attempt 
is made to derive their solutions. The simple integrals, both indefinite and 
definite, help in many contexts to define some important concepts of 
economic dynamics. The discussion that follows begins by introducing the 
notion of the integral. Then we move on to discuss the technique of 
differential equations. From now on, all functions in this unit will be assumed 
to be continuous and real valued.  

7.3.1 The Indefinite Integral and its Economic Applications 

As we have pointed out above, basically indefinite integral is reverse 
differentiation. Recall that differential calculus gives the rate of change 
(derivative) of a given function. Indefinite integration reverses such a process 
and finds the unknown function whose rate of change (derivative) is given. If 
the function f(x) is written symbolically as 

∫ dxxf )(  

which is read as “the integral of f (x) with respect to x” and f (x) is the 
‘integrand’. We can write  

∫ dxxf )(  = F(x)  

provided f(x) is the derivative of ( )F x  i.e. f(x) = 
dx
d F(x). It is not difficult to 

see that the function F(x) is not unique, because if F(x) contains the derivative 
f(x), then so has F(x) + c where c is any arbitrary constant. For that reason the 
indefinite integral is always written with an arbitrary constant, called ‘the 
constant of integration’. As functions differ only by an additive constant, the 
derivative remains the same.  

Examples: 

1) 3 41( 3) 3
4

x dx x x c+ = + +∫   

2) x xe dx e c= +∫   

3) 1 log( )dx x c
x

= +∫  

Through the above examples we may verify that in each case the derivative of 
the right hand side equals the corresponding integrand on the left-hand side. 
Thus we see that  

[ ]( ) ( )d f x dx f x
dx

=∫  

We now state two useful rules of integration.  



 

 7

Integration and
Application of Economic 

Dynamics

Rule 1: The integral of a constant time a function equals the constant times 
the integral of the function.  

∫∫ = dxxfkdxxkf )()(  

Example: 
3

2 22 2 2
3
xx dx x dx c

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
∫ ∫  

If we recall that the derivative of a constant time a function is the constant 
times the derivative of the function, it will be easier for us to appreciate above 
rule. If k = –1, we have the result 

 [ ] .)()( ∫∫ −=− dxxfdxxf  

Rule 2: The integral of a sum of functions equals the sum of the integrals of 
the functions, viz.,  

 [ ] ∫∫∫ +=+ .)()()()( dxxgdxxfdxxgxf  

Example: 2 23 3(5 ) (5 ) ( )x xe x dx e dx x dx dx
x x

− −− + = − +∫ ∫ ∫ ∫  

 2 15 3xe dx x dx dx
x

−= − +∫ ∫ ∫  

 ( ) ( )
1

1 2 35 3log
1

x xe c c x c
−⎛ ⎞

= + − + + +⎜ ⎟−⎝ ⎠
 

 15 3logxe x c
x

= + + +  

The rule is directly related to that of the derivative of a sum of function is the 
sum of the derivatives of the functions.  

Some Useful Formulae 

We state without proof some useful formulae for integration.  

1) 1,
1

1

−≠+
+

=
+

∫ nc
n
xdxx

n
n  

2) cx
x

dxdxx +== ∫∫ − log1  for any x > 0 

3) c
m

edxe
mx

mx +=∫  for any m. 

4) c
am

adxa
mx

mx +=∫ log
 

5) c
a
axaxdx +=∫

sincos  
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a
axaxdx +−=∫

cossin  

7) ( ) ( )[ ] ( ) ( )∫∫ ++=+ cdxxgKdxxfKdxxgKxfK 2121  for K1, K2 ≥ 0 

Determination of the Constant of Integration using Initial or Boundary 
Conditions 

We have seen above that the indefinite integral is assigned an arbitrary 
constant. Its value can be precisely determined if we know that the integral of 
the function y = f (x) + c obeys some prescribed initial condition (y = y0 
when x = 0) or more generally boundary condition (y = y0 when x = x0). To 
understand the underlying idea let us take the following example:   

( )
4 2

3
1 2 3

4 2

( 1)
4 2

4 2

x xx x dx c c x c

x x x c

⎛ ⎞ ⎛ ⎞
+ + = + + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= + + +

∫
 

Here y = f(x) + c = 
4 2

4 2
x x x c+ + + . Suppose, we are given the initial 

condition, y = 20 when x = 0. Then 

y0 = f(0) + c = c = 20 

This fixes the integral as the unique function y = 
4 2

20
4 2
x x x+ + + . We will 

return to the initial condition again in Section 7.4. 

Some Computational Methods 

The standard procedure of integration given above is sometimes inadequate 
for computational purposes. In such a situation, it becomes necessary to 
attempt certain kinds of manipulation before the function becomes amenable 
to integration. We have a few standard results to help initiate the process of 
integration. However, remember that these are not all that can be used and 
there are no routine manipulations that can be prescribed. Practice opens up 
the channels of finding a solution to the integral.  

Method of Substitution  

If F(x) = ∫ dxxf )( , the indefinite integral can be obtained by resorting to 
transformation. If we take x = g(y), then 

[ ]∫∫ ′= dyygygdxxf )()()( . 

See that ( ) ( )′= ⇒ =x g y dx g y dy . 

If φ(y) = [ ]∫ ′ dyygygf )()( , then 

F(x) = φ[g–1 (.) is the inverse of g(.)]. 
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Example: i)  Solve 

1
2( ) (1 5 )F x x dx= +∫ . 

Let y = 1 + 5x 

dy = 5dx, or dx = 
5
1 dy 

∴
1 3
2 21 1 2( )

5 5 3
F x y dy y c= = ⋅ +∫   

= cxcy ++=+⋅ 2
3

2
3

)51(
15
2

15
2  

ii) Solve 
( )∫ −

= 213
)(

x
dxxF  

Let y = 3x – 1 

So, dy = 3 dx, or, dx = 
3
1 dy. 

∴ c
x

c
yy

dyxF +
+

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−== ∫ )13(3

11
3
1

3
1)( 2   

Integration by Parts 

Let us return to differentiation of product of two functions u = f(x) and v = 
f(x) which gives,  

d(uv) = 
dx
duv

dx
dvu + .  

From this, we can obtain 

∫∫∫ += dxvudxuvdxuv '')'(  

uvdxuv =∫ )'(Θ  

∫−=∴ dxvuuvdxuv ''  

Example: Solve F(x) = ∫ − dxxe x  

Let u(x) = x, v(x) = –e–x  

So that u′(x) = 1, v′(x) = e–x 

∫=∴ dxvuxf '.)(  

 = ∫− dxvuuv '  
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 = cxecexe xxx ++−=+−− −−− )1(  

Economic Applications of Indefinite Integration  

Consider the following two examples as a part of your exercise to apply the 
tool of indefinite integration to often cited problems of economics.  

a) Investment and the Stock of Capital  

Let net investment I is the rate of change of the stock of capital K. If time is 
treated as a continuous variable, we can express this as  

I(t) = 
dt

tdK )( .  

Thus, if the rate of investment I(t) is known, the capital stock K(t) can be 
estimated through the formula, 

∫= dttItK )()(  

Example: The rate of net investment is given by
1
3( ) 12I t t= and the initial 

stock of capital at t = 0 is 25 units. Find the equation for the stock of capital.  
1 4
3 33( ) 12 12

4
K t t dt t c⎛ ⎞= = +⎜ ⎟

⎝ ⎠∫  

 = 
4
39t c+  

As K(0) = c = 25 given,  

K(t) = 
4
39 25t +  

b) Obtaining the Total from the Margin  

Integration helps us recover the total function from the marginal function if 
the concerned variable varies continuously. Thus, it will be possible to derive 
the total functions such as cost, revenue, production and saving from their 
marginal functions. We will examine a simple application to see the procedure 
involved.    

Example: If the marginal revenue function of a firm in the production of 
output is MR = 40 – 10q2 where q is the level of output and total revenue is 
120 at 3 units of output, find the total revenue function.  

Since MR = dTR
dq

, we can write  

TR = ∫ MRdq 

 = ∫ (40 – 10q2) dq 

 = 40q – 
3

10 q3 +c  
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At q = 3, TR = 30 + c = 100 given. So c = 90. The required total revenue 
function is 

TR(q)= 31040 90
3

q q− + . 

7.3.2 The Definite Integral and its Economic Applications 

The definite integral of the function f(x) over the interval [a, b] is expressed 

symbolically as dxxf
b

a
∫ )( , read as “the integral of f with respect to x from           

a to b”.  

The smaller number a is termed the lower limit and b, the upper limit, of 
integration. Geometrically, this definite integral denotes the area under the 
curve representing f(x) between the points x = a and x = b.  

 

Fig. 7.1 

It should be noted that the indefinite integral f(x) dx is a function of x, 

whereas the definite integral dxxf
b

a
∫ )(  is a number. The numerical value of 

the definite integral depends on the two limits of integral also changes. This is 
clear from Figure 7.1 where if we change the interval (a, b) to (c, d) the value 
of the area under the curve will, in general, change.  

Another feature of the definite integral is that its value does not depend on the 
particular symbol chosen to represent the independent variable so long as the 
form of the function is not changed. That is,  

dxxf
b

a
∫ )(  = dttf

b

a
∫ )( = duuf

b

a
∫ )( = etc.  

The following theorem establishes the connection between indefinite and 
definite integration and supplies the method for evaluating definite integrals.  

The Fundamental Theorem of Calculus  

If dxxf
b

a
∫ )(  = f(x) + c, then  

dxxf
b

a
∫ )(  = f(b) – f(a). 

f(x)

O a c b d x 
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5
2

1

x dx∫ . 

5
2

1

x dx∫  = x3 + c  

So, 
5

2

1

x dx∫  = 3 35 1−  = 124. 

2)  To evaluate 
1

2

1

( ) .ax bx c dx
−

+ +∫  

2 3 2 '1 1( ) .
3 2

ax bx c dx a x b x cx c+ + = + + +∫  

So, 
1

2

1

( )ax bx c dx
−

+ +∫ =
3 2 3 21 1 ( 1) ( 1).1 .( 1)
3 2 3 2

a b c a b c
⎛ ⎞ ⎛ ⎞− −

+ + − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1 1 1 1( ) ( )
3 2 3 2
1 1( )
3 2

2 2
3

12( 1)
3

a b c a b c

a b c

a c

a

= + + − − + −

= − +

= +

= +

 

Definite integrals are subject to certain rules of operation.  

Rule 1: If the two limits are equal, the value of the integral is zero.  

dxxf
b

a
∫ )(  = 0.  

Rule 2: Reversing the limits of integration changes the sign of the integral. 

dxxf
b

a
∫ )( = dxxf

a

b
∫− )( . 

Rule 3: The definite integral can be expressed as the sum of subintegrals. 

dxxf
c

a
∫ )( = ( ) ( )

b c

a b
f x dx f x dx+∫ ∫   

where b is a point within the interval (a, c).  

We now discuss briefly one special type of definite integral, the improper 
integral. When one of the limits of integration is + ∞ or (–∞) a definite 
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integral is called an improper integral. Such integrals are evaluated using the 
concept of limits according to the following rules: 

i) dxxf
a
∫
∞

)( = dxxfLt
b

a
b ∫∞→

)( . 

ii) dxxf
b

∫
∞−

)( = dxxfLt
b

a
a ∫∞→

)(  

Example: 

Evaluate ∫
∞

1
2x

dx  

Since 11

1
2 +−=∫ bx

dxb

, the desired integral is 

=∫∞→

b

b x
dxLt

1
2 .11

=⎟
⎠
⎞

⎜
⎝
⎛−

∞→ b
Lt

b
 

Economic Applications of the Definite Integral 

a) Consumer’s Surplus 

Consumer’s surplus (CS) measures the net benefit that a consumer enjoys 
from the purchase of a particular commodity in the market. To measure CS, 
we take (i) the demand function of a consumer P = f(q) representing the 
highest price a consumer is willing to pay (her ‘demand price’) for any 
specified quantity, (ii) the actual price paid for the quantity purchased and (iii) 
get the difference between (i) and (ii). In the figure below, a consumer is 
willing to pay a price of p1 per unit for q1 units, p2 per unit for q2 units, and so 
on. Suppose the market price is p . At this prices she purchases q  units and 
her actual expenditure is pq , represented by the rectangle OpEq . Her total 
willingness to pay for q is obtained as the sum of her demand prices for all the 
units from 0 to q . 

 

Fig. 7.2 

Mathematically, this is the definite integral of the demand function up to q , 
or the area under the demand curve up to q . The excess of this total 
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willingness to pay in units of money over her actual expenditure is her 
Consumer’s surplus.  

CS = −∫ dqqf
q

0

)( pq . 

It is represented by the crossed area in the diagram.  

Example: Suppose the demand function of a consumer is given by p = 80 – q. 
If the price offered is p = 60, find the consumer surplus.  

For p = 60, we get q = 20 from the demand equation. Actual expenditure pq = 
1200.  

Now 
20

0

(80 )CS q dq pq= − −∫   

1400 1200 200= − = . 

Thus the consumer’s surplus is Rs.200. 

b) Capital Accumulation Over a Specified Period  

Since ctKdttI +=∫ )()( , we may use the definite integral 

)()()( aKbKdttI
b

a

−=∫  to find the total capital accumulation during the time 

interval [a, b]. 

Example: Given the rate of net investment I(t) = 9t1/2, find the level of capital 
formation in (i) 16 years and (ii) between the 4th and the 8th years.  

i) K = 3840)16(69 2/3
16

0

2/1 =−=∫ dtt  

ii) K = .76.874876.135)4(6)8(69 2/32/3
8

4

2/1 =−=−=∫ dtt  

c) Present Value or Discounted Value Under Continuous Compounding 
of Interest 

A basic concept in capital theory is the present or discounted or capital value 
of a specified sum of money that will be available at a future date. If the 
annual rate of interest is 100r percent, then the present value Y of Rs. x 

available next year is Y = 
r

x
+1

, because Rs. ⎟
⎠
⎞

⎜
⎝
⎛

+ r
x

1
 now will become Rs.x 

after one year at the stipulated annual rate of interest of 100r per cent. 
Similarly, the present value of Rs.x available t years hence is 

Y = ( )tr
x

+1
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If interest is compounded n times a year at 100r per cent per year then the 
present value is 

Y = nt

nt n
rx

n
r

x
⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +

1
1

    … (1) 

If interest is compounded continuously, then n → ∞ and the continuous 
counterpart of (1) becomes 

Y = x e–rt  

using the result: kx
nx

n
e

n
kLt =⎟

⎠
⎞

⎜
⎝
⎛ +

∞→
1 . 

Now consider a project that yields an income x(t) at future period t for t = 1, 2, 
…, T. That is, the income stream associated with the project for T years is : 
x(1), x(2), …, x(T). The present or discounted value of this income stream at 
annual compounded is: 

Y = 
( )∑

= +

T

t
tr

tx
1 1

)(       … (2) 

When income flows continuously at the rate of x(t) per period up to period T 
and interest is compounded continuously the expression for present value 
becomes  

Y = ∫ −
T

rt dtetx
0

)(       … (3) 

Note that the magnitude of present value depends on the size of the income 
stream, the number of years it flows (the time horizon) and the rate of interest 
(the discount factor).  

You should keep in mind the distinction between the present value of the sum 
x(T) available T periods hence and the present value of the stream of income 
x(t) per period up to period T. In the figure the former is the ordinate at t = T, 
whereas the latter is the shaded area under the curve upto t = T.  

 

Fig. 7.3 
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A particular case of interest is the valuation of an asset (a bond or a piece of 
land) yielding a fixed income Rs. R for ever. The market value Y of such an 
asset is the present value of the perpetual yield.  

Y = ∫
∞

−

0

Re dtrt  = R ∫
∞

−

0

dte rt  

Remembering the rule for evaluating improper integrals. 

∫
∞

−

0

dte rt = 
rr

e
r

LtdteLt rb

b

b
rt

b

111

0

=⎟
⎠
⎞

⎜
⎝
⎛ +−= −

∞→

−

∞→ ∫ . 

Hence, the market value is: 

Y = .
r
R  

To illustrate further, the use of the concept of present value, we consider the 
following more complex problem of optimal timing.  

The value of timber planted on a plot of land grows over time according to the 
function V(t) = t2 . Assuming zero cost of maintenance and a discount factor 
of r, find the optimal time to cut the timber for sale.  

Since cost of production (upkeep) is zero, profit maximisation here is 
equivalent to the maximisation of sales revenue V. Due to the interest factor, 
r, different V values, however, are not comparable because they accrue at 
different points of time. The solution involves discounting each V value to its 
present value (the value at t = 0). The process of discounting puts them on 
comparable footing.  

Assuming continuous compounding, the present value R(t) can be written as  

R(t) = V(t)e– rt = t2 e– rt. 

The optimal time of cutting is the value of t that maximises R(t). Since f(x) 
and log f(x) attain their maximum at the same value of x, the problem can 
equivalently be restated as finding the value of t that maximises log R(t). 

ln R(t) = t log 2 – rt  

Differentiating with respect to t and setting the derivative equal to zero, we get  

1 ln 2 0
2

dR r
R dt t

⎛ ⎞
− = − =⎜ ⎟

⎝ ⎠
 

or, ln 2 0( 0)
2

dR R r R
dt t

⎛ ⎞
= − = ≠⎜ ⎟

⎝ ⎠
 

or, ln 2 ,   since 0.
2

t R
r

= ≠  
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or, t = 

2ln 2
2r

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

We leave it to you to check that at this value of t the second order condition 

for maximisation 2

2

dt
Rd < 0 is also satisfied. Thus, the expression for the 

optimum time for cutting the timber is (log 2/2r)2.  It is to be noted that the 
higher the rate of discount r, the sooner the timber should be cut. This is a 
general characteristic of all optimal storage or timing problems. 

7.4 DIFFERENTIAL EQUATIONS AND ITS 
ECONOMIC APPLICATIONS 

We deal with many economic models which have temporal dimensions 
involving relationships between the values of variables at a given point of 
time and the changes in these values over time. As an expample we may 
consider a model of economic growth that often postulates a functional 
relationship between the change in the capital stock and the value of output. 
When time is modelled as a continuous variable, differential equations are 
formulated by involving the derivatives (or differentials) of unknown 
functions.  

7.4.1  Solving Differential Equations 

Solving a differential equation means finding a function that satisfies that 
equation.  

Let us start with some basic ideas behind these equations. If y = f(x) is a 

function for which derivatives of adequate order exist, then )(' xf
dx
dy

= . 

Suppose that we know f ′(x) and would like to go back to the function y. 
Therefore, we try to solve the problem.  

dy = f′(x)dx 

⇒ y = ∫ dxcxf )(' . 

Through differential equations, we attempt to solve the problems, which are 
related to change over time, i.e., dynamic variables. For example, suppose that 
a hypothetical economy’s income (y) is related to time (x). It is given in 
functional form: y(x) = 2x1/2. If the income changes over time, we find the rate 

of change as 2
1

−
= x

dx
dy . Let us work to find the time path of the income 

change, so that we write y = y(x). The derivative of this function, however, 
will be same as that of y = y(x) + c, where c is any arbitrary constant. In such 
a situation, we cannot determine a unique time path of the income change. It is 
necessary, therefore, to work out a definite value of c. Additional information 
required for that purpose is to have the initial condition.  If we know the initial 
income of the economy, say, y(0), i.e., value of y at x = 0, then the value of 
the constant c can be determined.  

Thus, from y(x) = 2x1/2 +c, when x = 0, 
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we get y(0) = 2(0)1/2 +c = c. 

See that constant c is no longer arbitrary as if y(0) = 10,000, c = 10,000 and  

y(x) =2x1/2 + 10,000. More generally, for any given initial income, y(0), the 
time path will be 

y(x) =2x1/2 + y(0). 

Note that the income example, its dynamic form, consists of the sum of initial 
condition and another term with time variables. 

Remember a general principle on the initial value problem: The 
differential equation that involves only the first derivative, has a unique 
solution if it has one initial condition. In addition, the differential equation 
that  involves only the first and second derivatives, has a unique solution if 
it has two initial conditions.  

Differential Equation: Equilibrium and Stability 

In a difference equation, if the initial value has a solution that is a constant 
function and hence independent of t, then the value of the constant is called an 
equilibrium state or stationary state of the differential equation.  

Example:  

Consider the differential equation  

y′(t) + y(t) = 2. 

The general solution of this equation, as we shall below, is  

( ) 2.ty t Ce−= +  

Thus for the initial condition y(0) = 2, the solution of the problem is y(t) = 2 
for all t. Thus the equilibrium state of the system is 2.  

The order of a differential equation is the order of the highest derivative 
appearing in the equation. Its degree is the highest power to which the highest 
order derivative is raised. A differential equation is linear if the dependent 
variable and derivatives are raised to the first power only and no product term 

y 
dx
dy occurs.  

Examples: In all the examples that follow the unknown function is y = f(x).  

1) 94 −= x
dx
dy  First order, first degree 

2) 02
4

=−⎟
⎠
⎞

⎜
⎝
⎛ x

dx
dy  First order, fourth degree 

3) 022

2

=− y
dx

yd  Second order, first degree 
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4) 010log 2

2

2

3

3
3

4

4

=+++−+ yx
dx
dye

dx
ydx

dx
ydx

dx
yd x   Four order, first degree 

5) y
dx

yd
dx

yd 28
7

2

24

3

3

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 Third order, fourth degree. 

Equation (1), (3) and (4) are linear since they are all of the first degree.  

Please note that depending upon the complexity of the equations that we use 
in course of the following discussion, the notations adopted will be in the form 

of either , '( )dy or f x
dx

.  

First Order Differential Equation 

Solution to first order differential equation in specific instances can be worked 
out with (1) separation of variables. Consider the equation, 

)(' xf
dx
dy

=  

or, dy = f′(x)dx 

If we integrate both the sides,  

∫∫ = dxxfdy )(' , so that variables x and y are separated, it becomes easy for 
applying appropriate technique of integration.  

Example: 2x
dx
dy

=  

or, dy = x2dx 

So, ∫∫ = dxxdy 2  

or, y = cx
+

3

3

 

Exact equations 

From ( )xf
dx
dy '= , we get 

y = ∫ + cdxxf )('  which can be written as g(x) + c.  

Remember that the addition of a constant term, ‘c’ to the function does not 
affect its derivative. However, it shifts the function parallelly. Depending 
upon the different values acquired by the constant term, we get a family of 

curves for the function. Take, for example, the above solution, y = cx
+

3

3

 

with c= 0. Then 2x
dx
dy

= ,  
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or, dy = x2dx 

or, dy – x2dx = 0 

Note that ‘0’ in the right side of this solution is due to a choice like c = 0. So 
we write  

dy – x2dx = c, (where c = constant) 

Generalising the above result, we can write  

u(x, y) = c. 

So, du = uxdx + uydy = 0 

If u = yx
+

−
3

3

, then du = –x2dx + dy = 0 

or, 2x
dx
dy

=    

Since u = yx
+

−
3

3

, 2x
x
u

−=
∂
∂  and .1=

∂
∂

y
u   

Therefore, dx = 
x
u

∂
∂ and dy = 

y
u

∂
∂ . From these we write the generalised form 

of differential equation as P(x, y) dx + Q(x, y) dy = 0. 

If we can find a function g(x, y) such that P(x, y) = 
x
g

∂
∂ and Q(x, y) = 

y
g

∂
∂ , we 

write  

d [g(x, y)] = 
x
g

∂
∂ dx + 

x
g

∂
∂  dy 

  = P(x, y) dx + Q(x, y) dy.  

Then g(x, y) = c are integral curves of the above differential equation. This 
class of differential equations is called exact differential equations. 

Example: 

For xdx + ydy =0, set g= 
2
1 (x2+y2). Then gx = xdx and gy = ydy. The 

solutions are x2+y2 = c, or circles.  

To determine if a differential equation is exact or not, check that 
x
Q

y
P

∂
∂

=
∂
∂ . 

Example:  

From, (3x2+y2)dx + 2xydy = 0, we get  

P(x, y) = 3x2+y2 
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Q(x, y) = 2xy, so that  

Py = 2y = Qx. The equation, therefore, is exact. 

Exercise: 

Solve the exact differential equation 

2yxdy + y2dx = 0 

In this equation 

P(x, y) = 2yx 

Q(x, y) = y2 

Now, F(y, x) = )()(2 2 xxyxyxdy φφ +=+∫  

)('2 xy
dx
dF φ+=  

As Q =
dx
dF , we equate Q(x, y) = y2 and )('2 xy

dx
dF φ+=  to get 0)(' =xφ  

=)(' xφ ,0)(' kdxdxx == ∫∫φ which give the specific form of )(' xφ . 

So, F(y, x) = y2x + K 

The solution of the exact differential equation should then be F(y, x) = c. K 
being a constant can be merged with c, so that y2x = c, or yx = cx–1/2 where c 
is arbitrary.  

A first order linear differential equation is general written as 

)()( xQyxP
dx
dF

==      …. (4) 

where P and Q are two functions of x, and that of y. P and Q may also be 
expressed in other forms as x2 and ex. These may also be constants. In the 
following, we will discuss homogenous differential equations.  

Example: Solow's model of economic growth  

Consider a production function  

( ),q f K L=  

where q= output, K= capital and L= labour.  It is specified that the production 
function takes the form: 1q AL Kα α−= , where A is a positive constant and 0 < a 
< 1. A constant fraction s of output is "saved" (with 0 < s < 1), and used to 
augment the capital stock. Thus, the capital stock changes according to the 
differential equation  

' 1( ) ( ) ( )K t sAL t K tα α−=  
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and takes the value K0 at t = 0. The labour force is L0 > 0 at t = 0 and grows at 
a constant rate λ, so that  

' ( )
( )

L t
L t

λ=  

You can solve this model by solving for L, then substitute the value into the 
equation for ' ( )K t to get K.  

Note that the equation for L is separable, and we can write  

dL dt
L

λ= . 

Integrating it we get  

log
, t

L t C
or L Ceλ

λ= +

=
 

Given the initial condition, we have C = L0.  

Substituting this result into the equation for ' ( )K t yields  

' 1
0( ) ( ( )) ( )tK t sA K t L eα λ α−= ( ) ( )( )1

0=sA L te K t
αα αλ −

 

This equation is separable, and may be written as  
-1

0K ( ) tdK sA L e dtα α αλ= . 

Integrating both sides, we obtain  

0
K ( ) ,

tesA L C
α αλ

α

α αλ
= +  

so that  

( ) ( )
1

0K t
tesA L C

αλ αα

λ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

. 

Given ( ) 0K 0 ,K= we conclude that 0
0

( )( ) .sA LC K α
λ= −  

Thus, ( ) ( )
1

0 0
1K t ( )

tesA L K
αλ αα α

λ
⎡ ⎤−

= +⎢ ⎥
⎣ ⎦

for all t. 

An interesting feature of the model is the emergence of capital-labor ratio. We 
have  

( )
1

0 0

0

1 ( )
( )
( )

t

t

esA L K
K t
L t L e

αλ αα α

λ

λ
⎡ ⎤− +⎢ ⎥
⎣ ⎦=  

for all t. 
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( )

K t
L t

converges to 
1

sA α

λ
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Homogenous Case 

If P and Q are constant functions and if Q is identically equal to zero, equation 

(4) becomes 
dx
dy + ay = 0 where a is some constant  … (5) 

Please note that the constant term ‘0’ can be regarded as in the first degree in 
terms of y because 0y = 0. 

Equation (5) can be written as  

a
dx
dy

y
−=

1        …. (6) 

For solution, we write cdx
y

dy
=  (with c = –a) and integrate both the sides, 

such that ∫∫ = cdx
y

dy . The left side of the above gives log y + c1 for y ≠ 0. 

Whereas right side becomes  

cx + c2 

Bringing together the result of the left and right sides, 

log y + c1 = cx + c2 

or, log y = cdx + c3  (combining c1 and c2 of both sides) 

or, elog y = ( )3cx ce +  

or, y = 3. ccxe e = A c xe where A = 3ce  

Putting back c = –a,  

we get y(x) = A axe−  where A is arbitrary   … (7) 

To get rid of the arbitrary constant, set x = 0 in the equation y(x) = A axe− , so 
that  

y(0) = A 0e  = A. 

Thus, y(x) = y(0) axe−      … (8) 

In (7), A is an arbitrary constant. The solution, therefore, is a general 
solution. When a particular value is substituted for A, we derived the 
particular solution in (8). There are an infinite number of particular 
solutions, value of y(0). However, y(0) is important since it can alone satisfy 
the initial condition. From the feature of giving a definite value to the arbitrary 
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constant, we refer the result in (8) as the definite solution of the differential 
equation. 

Non-homogenous case 

When we have a non-zero constant in place of the zero in equation (5) above, 
it is called a non-homogenous linear differential equation.  

Thus, bay
dx
dy

=+      … (9) 

is a non-homogeneous differential equation. The solution of this class of 
equations has two parts, (a) complementary function (yc) and (b) particular 
integral (yp). Before we proceed to solve equation (9), it will be useful to point 
out that homogeneous equation (5) is called a reduced equation of (9) and the 
non-homogenous equation (9) itself is categorised as the complete equation. 
Moreover, the complementary function (yc) is the general solution of the 
reduced equation, whereas the particular integral (yp) is any of the particular 
solution of the complete equation. 

Solution to non-homogenous differential equation is seen as a sum of the 
complementary function and the particular integral. 

Thus, y(x) = yc + yp. 

We have noted above that yc is the general solution of the reduced equation. 
We take the general solution of the homogeneous differential equation (5) 
above, which was A axe− . Thus, yc = A axe− . 

Let us came to particular integral. Recall that it is any particular solution of 
the complete equation. Perhaps the simplest possible type of solution we can 
think of is to take it being some constant (y = k). Taking of as a constant, we 

get 0=
dx
dy . Therefore, equation (9) becomes ay = b, or y = 

a
b where a ≠ 0. 

In that case p
by
a

= , we get the general solution to the equation as  

y(x) = A axe− + 
a
b      … (10) 

See that the solution remains general. The presence of arbitrary constant A is 
responsible for it. In order to make it definite, we need to take an initial 
condition. Setting x = 0, y can be assigned the value y(0) and we get  

y(0) = A +
a
b  

or, A = y(0) – 
a
b  

Putting this value in (10), the solution becomes  
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 y(x) = ⎥⎦

⎤
⎢⎣
⎡ −

a
by )0( axe− +

a
b     … (11) 

which is the definite solution as long as a ≠ 0. 

Exercise: 

Solve the equation 62 =+ y
dx
dy with the initial condition y(0) = 10.  

We have a = 2 and b = 6. Hence, according to (11), the solution is  

y(x) = [10 – 3]e–2x + 3 = 7e–2x + 3 

Solution when a = 0 

If bay
dx
dy

=+ has a = 0, then  

 b
dx
dy

=       … (12) 

Its general solution is found by integration, i.e., y(x) = bx + c where c = 
arbitrary constant.  

Complementary function: with a = 0 

yc = Ae–ax = Ae0 = A   (A = an arbitrary constant) 

Particular Integral 

As a = 0, the constant solution y = k does not work and some non-constant 
solution needs to be tried. Take y = kx so that  

 .k
dx
dy

=  

From the complete equation (12) above k = b. 

∴ yP = bx 

General solution: y(x) = yc + yP = A + bx  …….… (13) 

Example: 

Solve the equation ,2=
dx
dy with the initial condition y(0) = 5. 0 

From (13) above, y(x) = 5 + 2x. 

Verification of the Solution 

You can check the correct answer of your solution to a differential equation 
by taking its differentiation. Follow the following two steps: 



 

 26

Integral Calculus and 
Economic Dynamics 

1) Test that the derivative of the time path is consistent with the given 
differential equation. 

2) Test the definite solution to find that the solution satisfies the initial 
condition. 

  Check Your Progress 1 

1) Solve the following differential equations.  

a) (y(t))2 y′(t) = t + 1;  

b)  y′(t) = t3 − t.  

c)  y′(t) = tet − t.  

d) ( )( ) y ty t e= y′(t) = t + 1. 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

2) Solve the following differential equation for the given initial value.  

a) ty′(t) = y(t)(1 − t), (t, y) = (1, 1/e).  

b) (1 + t3)y′(t) = t2y(t), (t, y) = (0, 2).  

c) y(t)y′(t) = t, (t, y) = (√2, 1).  

d) 2t ' 2e ( ) ( ( )) 2 ( ) 1 0, ( , ) (0,0).y t y t y t t y− − − = =  

3) Find yc, yp , the general solution and definite solution of the equation and 
check its validity: 

4 12; (0) 2dy y y
dx

+ = =  

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 
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7.4.2 Solving Linear First-order Differential Equations 

A linear first-order differential equation, in general,   takes the form  

'y ( ) ( ) ( ) ( )t a t y t b t+ = for all t and with a  and b representing functional 
forms.  

Coefficient of y(t) constant 

Consider the case in which a(t) = a ≠ 0 for all t, so that  

' ( ) ( ) ( ) ( )y t a t y t b t= = for all t. 

If the left-hand side were the derivative of some function and we could find 
the integral of b then we could solve the equation by integrating each side. 
If we multiply both sides by g(t) for each t, then  

g(t)y′(t) + ag(t)y(t) = g(t)b(t) for all t. 

See that the left-hand side of this equation to be the derivative of a product 
of the form  f (t)y(t) provided we have  f (t) = g(t) and  ' ( )f t = ag(t). See 
that if  ( ) atf t e= , then  ' ( )f t = atae = a f (t).  

Thus if we set ( ) atg t e= , so that we have  

' ( ) ( ) ( )at at ate y t ae y t e b t+ = and the integral of the left-hand side is ( )ate y t . 
We get the solution of the equation as  

( )ate y t =C+ ( )ase b s ds∫  

 or,  -aty(t) =e  (C+ ( ) )ase b s ds∫  

So, the general solution of the differential equation  

' ( ) ( ) ( )y t ay t b t+ = for all t, 

where a is a constant and b is a continuous function, is given by  

 -aty(t) =e  (C+ ( ) )ase b s ds∫ for all t. 

Because multiplying the original equation by eat allows us to integrate the 
left-hand side, we call ate an integrating factor.  

If b(t) = b for all t then the solution simplifies to  

( ) /aty t Ce b a−= +  

Looking at the original equation we see that ' ( )y t = 0 if and only if y(t) = 
b/a. Thus y = b/a is an equilibrium state.  

For the initial condition 0 0( )y t y= we have 0
0 /aty Ce b a−= +  so that 

( ) 0
0 / atC y b a e= − . The solution of the difference equation is given by   
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0y(t)= y .a t tb be
a a

−⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

As t → ∞ , y(t) converges to b/a if a > 0, and grows without bound if a < 0 
and y0 ≠ b/a. That is, the equilibrium is stable if a > 0 and unstable if a < 0.  

Example:  

The demand function is D(p) = a − bp and that of the supply is S(p) = α + βp, 
where a, b, α, and β are positive constants. If the speed at which the price 
changes is proportional to the difference between supply and demand, find the 
equilibrium price and examine its stability.  

Since ' ( ) ( ( ) ( ))p t D p S pλ= − with λ > 0  from the supply and demand 
functions we have  

'p ( ) ( ) ( ) ( ).t b p t aλ β λ α+ + = −  Consequently, the general solution of this 
differential equation is 

( )( ) ( ) /( )b tp t Ce a bλ β α β− += + − +  and the equilibrium price is ( ) /( )a bα β− + . 
Since ( ) 0bλ β+ > , the equilibrium derived is stable.  

Check Your Progress 2 

1) Find the general solution of y′(t) + (1/2)y(t) = 1/4. Determine the 
equilibrium state and examine its stability.  

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

2) Find the general solution of the differential equation 
( ) 3 ( ) 5y t y t− = y′(t) − 3y(t) = 5 if the initial value is given as y(0) = 1.  

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

3) Solve the differential equation, 'ty ( ) 2 ( ) 0t y t t+ + = for 0t ≠ .  

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 
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7.4.3 Solving Second-order Differential Equations 

General form 

A second-order ordinary differential equation consists of time as the 
independent variable with the depandent variable y with its first and second 
derivatives. Consider for example an equation ' ''( , ( ), ( ), ( )) 0G t y t y t y t =  for 
all t such that we can write it in the form  

'' 'y ( ) ( , ( ), ( ))t F t y t y t= . 

Equations of the form y″(t) = F (t, y′(t))  

Take an equation of form  

'' 'y ( ) ( , ( )),t F t y t=  

in which y(t) does not appear. See that can be reduced to a first-order 
equation if we take '( ) ( )z t y t= .  

Example:  

Consider Arrow-Pratt measure of relative risk aversion,  

''

'

wu ( )(w)=
( )

w
u w

ρ –  where ( )u w is postulated a function for wealth w .In such a 

formulation, if we consider two utility functions, u and v , then greater risk-
aversion of the former is assumed whenever u ( ) ( )vw wρ ρ> . 

 Find the utility function that has a degree of risk-aversion independent of the 
level of wealth? Or, for what utility functions u do we have an equation  

 
''

'

wu ( )a=
( )

w
u w

–  for all w ? 

Note that we have a second-order differential equation in which the term u(w) 
does not appear. If we define '( ) ( )z w u w= , then   

'

'

wz ( )a=
( )

w
z w

–  

or, 'az(w)=-wz ( ).w   

The equation becomes separable and we can write as  

dwa .
w

dz
z

= −  

Consequently, its solution is given by  

alnw=-lnz(w)+C  
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or, ln ln ( ) ,a w z w C= +  

or, ( ) az w Cw−=  

Since we have taken '( ) ( )z w u w= , to get u by integrating  

 u(w)=Clnw+B if a =1 

and  

1

aCw B
a

−

+
−

 if 1.a ≠  

Thus, when a takes this form we have a utility function with a constant degree 
of risk-aversion.  

Linear second-order equations with constant coefficients 

A linear second-order differential equation with constant coefficients 
takes the form  

'' 'y ( ) ( ) ( ) ( )t ay t by t f t+ + =  

for constants a and b and a function f . The above equation is homogeneous 
when if ( ) 0f t =  for all t.  

Let us call '' 'y ( ) ( ) ( ) ( )t ay t by t f t+ + =  as the "original equation" and assume 
that 1y as its solution. For any other solution of this equation y, 
define 1z y y= − .  

Since 1y y− can be writen as  

'' ' '' '
1 1 1y ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0t ay t by t y t ay t by t f t f t⎡ ⎤ ⎡ ⎤+ + − + + = − =⎣ ⎦ ⎣ ⎦ , 

 z is a solution of the homogeneous equation  

'' 'y ( ) ( ) ( ) 0t ay t by t+ + =  

Further, for every solution z of the homogeneous equation, 1y z+  is also a 
solution of original equation. Therefore, as has been discussed above in first 
order non-homogenous equation case, solutions of the original equation may 
be found by  

• a particular solution of the equation and  

• adding to it the general solution of the homogeneous equation.  

Finding the general solution of a homogeneous equation 

Recall that the solution derived in case of first-order homogenous equation 
was of the form ( ) rty t Ae= . Therefore, we can write ' ( ) rty t Ae=  and 

'' ( ) rty t Ae= .  Substituting these into '' 'y ( ) ( ) ( )t ay t by t+ +  
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We get  

 2 rt rt rtr Ae arAe bAe+ +  

= rt 2Ae ( ).r ar b+ +  

Thus,  for ( )y t to be a solution of the equation we need  

2 0.r ar b+ + =  

This equation is knows as the characteristic equation of the differential 
equation.  

Let us look at the solutions offered by the characteristic equaion. If  

• 2 4a b> , then there are two distinct real roots, say 1r and 2r . We have both 
1

1( ) r ty t A e= and 2
2( ) r ty t A e= as solutions the equation for any values of 1A  

and 2A . Hence,  also 1 2
1 2( ) r t r ty t A e A e= + is a solution. It can be shown that 

every solution of the equation takes this form;  

• 2 4a b= , then the characteristic equation has a single real root. The general 

solution of the equation is ( )1 2
rtA A e+ , where 1

2
r a= − ; 

• 2 4a b< , then the characteristic equation has complex roots. Derivation of 
the results on these roots will be taken up in greater details in Unit 8 and 
we will present here the general solution of the equation as  

( )1 2A cos( t sin( )) ,tA t eαβ β+  

where 
2
aα = −  and 

2

4
abβ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. We will express this solution 

alternatively as tCe cos( )tα β ω+ , where the relationships between the 
constants 1 2 1 2C, , A , and A  are A =C cos  and A = C sin . ω ω ω–  

Solution of a second order nonhomogeneous equation 

We follow a procedure similar to the one in case of first order equation. In 
the second order equation take a linear combination of ( )f t and its first and 
second derivatives to try for solution that satisfies the equation. If, for 
example,  

• 2( ) 3 6f t t t= − , then examine the values of A, B, and C such that 
2A Bt Ct+ +  is a solution; 

• ( ) 2sin cosf t t t= + , find values of A and B such that 
( ) sin cosf t A t B t= +  is a solution;  

• ( ) 2 Btf t e=  for some value of B, find a value of A such that BtAe is a 
solution.  
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Stability of solutions of second order homogeneous equation 

Consider the above homogeneous equation  

'' 'y ( ) ( ) ( ) 0t ay t by t+ + = . 

If 0b ≠ , this equation has a single equilibrium, viz., 0. That is, the only 
constant function that is a solution is equal to 0 for all t. We will consider 
three possible forms of the general solution of the equation to evaluate the 
stability of such an quilibrium.  

Case I: Characteristic equation has two real roots  

If  1r  and 2r , are the two roots of the characteristic equation, then  the general 
solution of the equation is 1 2( ) r t r ty t Ae Be= + . The equilibrium is stable if and 
only if 1r < 0 and 2r < 0 .  

Case II: Characteristic equation has a single real root  

With a single root (say r), the characteristic equation is in stable equilibrium 
if and only if this root is negative. Note that if 0r <  then for any value of k, 

k rtt e converges to 0 as t → ∞ .  

Case III: Characteristic equation has complex roots  

When the characteristic equation has complex roots, the form of the solution 

of the equation is atAe cos( )tβ ω+ , where 
2
aα = − , the real part of each root. 

The equilibrium will be stable if and only if the real part of each root is 
negative.  

On the basis of the above results we can sya that the stability of the 
equilibrium is ensured if and only if the real parts of both roots of the 
characteristic equation are negative. A bit of algebra shows that this 
condition is equivalent to 0a > and 0b > .On the other hand, if 0b = , then 
every number is an equilibrium, and none of these equilibria is stable.  

Check Your Progress 3 

1) Solve the differential equation '' '( ) ( ) 2 10y t y t y+ − = −   with initial 
conditions (0) 12y =  and ' (0) 2y = − .  

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 
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2) Solve the differential equation '' ( ) 6( ) 9 27y t t y+ + =  with initial conditions 
(0) 5y =  and ' (0) 5y = − .  

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

……………………………………………………………………………… 

7.4.4 Economic Applications: Examples 

a) The Harrod-Domar Analysis of Steady Growth  

Consider a macroeconomic model consisting of the following equations: 

S(t) = sY(t), 0 < s < 1 

I(t) = v ,
dx
dy v > 0 

S(t) = I(t) 

where Y, S, I stand for the rates of flow of national income, planned saving 
and planned investment at any point of time t. The first equation says that a 
constant fraction s of income is saved in each time period. The second 
equation represents the acceleration theory of investment in which induced 
investment is proportional to the rate of change of income (v is a constant of 
proportionality). There is no autonomous investment. For dynamic 
equilibrium, we need equally between saving and investment as each period. 
This is the significance of the final equation. The three equations lead to a 
simple differential equation 

0=− Y
v
s

dt
dY      … (14) 

By formula (10), the general solution is  

 Y(t) = Ae(s/v)t  

Suppose it is known that Y = Y0 at t = 0.  Then A = Y0 so that the equation 
becomes  

 Y(t) = Y0 e(s/v)t     … (15) 

This solution gives the behaviour of national income over time in dynamic 
equilibrium. For any variable x that changes with time, its rate of growth at 

any point in time is defined to be ⎟
⎠
⎞

⎜
⎝
⎛

dt
dx

x
1 , the rate of change of x divided by 

(as a proportion of) the value of x at that point of time. It is clear from 

equation (14) that in this model the rate of growth of national income ⎟
⎠
⎞

⎜
⎝
⎛

dt
dY

Y
1  
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v
s . In other words, national income grows at the 

constant rate 
v
s  in dynamic equilibrium.  

It follows as a corollary from our discussion that if a variable x is changing at 
a constant rate g over time (growing if g > 0, decaying if g < 0), then its time 
path is given by x = x0 egt where x0 is the value of x at initial or base period    
(t = 0).  

Our next application is taken from microeconomics. It will help us to 
understand the notion of stability.  

b) The Dynamics of Price in a Single Market 

Suppose the demand and supply functions for a particular commodity are 
given by  

Dt = a – bPt 

St = c + bPt; a, b, c, d > 0, a > c 

The first equation tells us that demand Dt in a particular period t is a 
decreasing linear function of price prevailing in that period Pt. The second 
equation, the supply function, has a similar interpretation.  

The equilibrium price in this context has the property that it (i) clears the 
market in each period and (ii) does not change over time. Let us denote it by 
P*. (Note that since it is constant through time there is no t-subscript). Writing 
P* for Pt in the demand and supply equations and setting Dt = St we obtain the 
expression for the equilibrium price 

 P* = 
db
ca

+
−  

The restriction a> c ensures that P* is positive. Now comes an important point. 
Knowledge of the equilibrium price tells us nothing about the behaviour of 
price out of equilibrium. In other words, although we know P* we do not 
know what happens when in any period t the price Pt is not equal to P*. Does 
price rise or fall or fluctuate in some unpredictable manner? To answer 
questions of this type precisely we have to introduce a dynamic adjustment 
rule for price. It seems natural and sensible to assume that price will tend to 
rise if demand exceeds supply and fall if demand falls short of supply and stay 
unchanged if demand and supply just balance in any period. This type of 
adjustment is incorporated in the analysis through a simple liner relationship.  

dt
dP  = θ (Dt – St), θ > 0   … (16) 

Since θ is a positive constant, this tells us that  

i) 
dt
dP  = 0 or P rises if Dt > St 
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ii)  

dt
dP  = 0 or P falls if Dt < St and  

iii) 
dt
dP  = 0 or P stays unchanged if Dt = St 

Substituting the demand and supply functions we obtain the differential 
equation for price 

dt
dP  = θ (b + d) P = θ (a – c). 

This, being of the form (9), has the solution 

P = Ae–θ(b + d)t + 
db
ca

+
− . 

Suppose it is known that P = P0 at t = 0. Then from the above solution 

A = ⎟
⎠
⎞

⎜
⎝
⎛

+
−

−
db
caP0 . But 

db
ca

+
−  = P*, the equilibrium price. So the solution can 

be written as 

P = (P0 – P*) Ae–θ(b + d)t + P*    … (17) 

This completely describes the time path of price in the market characterised 
by the given demand and supply curves and the adjustment rule (16). Note 
that the time path (for any given initial price P0) is determined by the demand 
and supply parameters (a, b, c, d) and the coefficient of adjustment θ. The 
dependence of the solution on θ brings out clearly the importance of 
adjustment rules in dynamics.  

Now let us take up the question of stability. Suppose that the initial price P0 is 
not the equilibrium price P*, that is (P0 – P*) ≠ 0. The system is stable if price 
tends to approach the equilibrium price P* as time passes, that is if 

∞→t
Lt P(t)=P*. 

It is clear that since θ > 0 and (b + d) > 0 the term e–θ(b + d)t (and hence the first 
term of (16) will tend to zero as t tends to infinity, so that P will indeed 
converge to P* and we have a system that is dynamically stable.  

7.5 LET US SUM UP 

Economic models with a temporal dimension involve relationships  
between the values of variables at a given point in time and the changes       
in these values over time. Solution to such problems are attempted by 
taking time is as a continuous (or discrete) variable. In this unit, we have 
discussed some of the basic tools of dynamic analysis – the indefinite 
integral, the definite integral and differential equations. In the process, we 
have learnt the application of such tools in solving problems related to 
economic dynamics. 
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Consumer’s Surplus: This notion was introduced by Alfred Marshall to 
measure the net benefit that a consumer enjoys from his act of purchasing a 
particular commodity in the market. It is defined in terms of the excess of the 
consumer’s total willingness to pay in units of money over his actual 
expenditure.  

Definite Integral: The definite integral of the function f(x) over the interval 

(a, b) is expressed symbolically as ∫
b

a

dxxf )( , read as “integral of f with 

respect to x from a to b. The smaller number a is termed the lower limit and 
b, the upper limit of integration. Geometrically, this definite integral denotes 
the area under the curve representing f (x) between the points x = 0 and x = b. 

Note that the definite integral ∫
b

a

xf )( is a number.  

Differential Equations: Differential equations are equations involving the 
derivatives (or differentials) of unknown functions. Solving a differential 
equation means finding a function that satisfies that equation.  

Economic Dynamics: Dynamics is essentially concerned with change and the 
effects of change on the behaviour of variables over time. Economic dynamics 
deals with economic variables like national income, price, etc. The task of 
dynamics is to consider the actual process of transition from the initial pre-
change position to the final equilibrium. 

Equilibrium: If an initial value has a solution that is a constant function (i.e., 
independent of t), then the value of the constant is called an equilibrium state 
or stationary state of the equation.  

Improper Integral: It is a special type of definite integral. When one of the 
limits of integration is + ∞ or – ∞, a definite integral is called an improper 
integral. Such integrals are evaluated using the concept of limits.  

Indefinite Integral: The indefinite integral is basically reverse differentiation. 
To differentiate means to find the rate of change (derivative) of a given 
function. Indefinite integration reverses the process and finds the unknown 
function whose rate of change (derivative) is given.  

Initial Value: To solve the differential (or  difference) equation by specifying  
the value of y  or the value of its derivatives at any value of t.It may not 
necessarily be the "first" value. 

Stable Solution :  If, for all initial conditions, the solution of the differential 
(or difference) equation converges to the equilibrium as t t → ∞ , then the 
equilibrium is stable. 

7.7 SOME USEFUL BOOKS 

Archibald, G.C. and R.G. Lipsey, 1983, An Introduction to a Mathematical 
Treatment of Economics (Third Edition), ELBS London, Chapters 12, 13 and 
14. 
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Baumol, W.J., 1974, Economic Dynamics (Second Edition), Macmillan, New 
York, Chapter 14. 

Chiang, Alpha C., 1983, Fundamental Methods of Mathematical Economics 
(Third Edition) McGraw Hill, International Students Edition Chapters 13, 14. 

IGNOU, 1990, MTE-01: First Elective Course in Mathematics (Block 3: 
Integral Calculus). 

7.8 ANSWER OR HINTS TO CHECK YOUR 
PROGRESS 

Check Your Progress 1 

1) a)  
1

2 33y(t)=( )t 3 3 )
2

t C+ +  

 b)  
4 2ty(t)=
4 2

t C− +  

 c)  
2

( )
2

t t ty t te e C= − + +   

 d)  21( ) log( )
2

y t t t C= + +  

 e)  The equation is separable: 

b y 1ye dy dt
t

=∫ ∫ .  So integrating by parts on the left to get yye ye−  = 

ln t + C. Thus the solution is defined by the condition 
( ) ( )y(t)-1 y te  = ln t + C. 

 f)   The equation is separable:  

  ∫(1/(4y + 1))dy = ∫t dt, 

  so that (1/4)ln(4y + 1) = (1/2)t2 + C, 

  or,  y(t) = Cexp(2t2) − 1/4. 

-1

3

2

-2t

-2t

y(t) = Cte ; C = 1. 
y(t) = C(1 + t )1/3; C = 2. 

y(t) = (t ); C = -1. 

(2 - C - e )y(t) = ; C = 1.  
(C + e )

C+

 

3) y(x) = e-4x+3 

 a) 

b) 

c) 

d) 

2) 
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Check Your Progress 2  

1) 2 1( )
2

t

y t Ce
−

= + .  Equilibrium: y* = 1/2; stable.  

2) 3t 5y(t)=Ce ;
3

−  C=8/3 

3) 
3

2 2

1y(t)=
t 3 3

t C tC
t

⎡ ⎤⎛ ⎞ − = −⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

 

Check Your Progress 3 

1)  2( ) 4 3 5t ty t e e−= + +  

 2)  3 3( ) 2 3t ty t e te− −= + +  

7.9 EXERCISES 

1) If the rate of change of y with respect to x is 2x and y = 4 when x = 1, 
find y as a function of x.  

2) The rate of change of y with respect to x is (0.8x – 0.6x2) and y = 0 and x 
= 0. Find y as a function of x. 

3) Let the consumer’s demand function be P = 20 – 2q. 

Calculate the consumer’s surplus for P = 8. Is it larger or smaller than the CS 
for P = 47? 

4) At the rate of interest of 4 per cent a year, what is the present value of 
Rs.1000 available 2 years later? 

5) A piece of land yields a constant rent of Rs.1000 per year. Find its market 
value if the rate of interest is 10 per cent per year.  

6) Solve the equation 255 −=− y
dx
dy with y(0) = 6 

7) Explain the dynamics of price adjustment process in a single market. 
What happens if θ < 0? 

8) Solve the equation ,04 =+ y
dx
dy with initial condition y(0) = 1. 

9) Find yc, yp, the general solution and definite solution of the equation and 

check its validity ;124 =+ y
dx
dy  y(0) = 1.  

10) Solve ;05 =− y
dx
dy  y(0) = 6 and check its validity. 
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11) Solve the differential equation '' '( ) 3 4 ( ) 12y t y y t+ − =  with initial 
condition (0) 4y = , ' (0) 2y = . Check the stability of the solution. 

12) Find the particular solution of the defferential equation  

  '' '( ) ( ) 2 10y t y t y+ − = − . 

13) Solve the differential equation '' '( ) 4 ( ) 4 ( ) 5y t y t y t− + =  with the initial 
conditions (0) 4y =  and ' (0) 6y = . 

Answer or Hints to Exercises 

1) x
dx
dy 2=  

 or cxcxxdxxdxdy +=+=== ∫∫∫ 2
2

2
222  

 or y = x2 + c 

 Now y = 4 when x = 1 so that 4 = 1 + c or c + 3. 

 ∴ y = f(x) = x2 + 3 

2) 26.08.0 xx
dx
dy

−=  

 or ∫∫ −= dxxxdy )6.08.0( 2  

 = ∫∫ − dxxxdx 26.08.0  

 = ∫∫ − dxxxdx 26.08.0  

 ∴y = cxx
+−

3
6.0

2
8.0

32

 

or y = 0.4x2 – 0.2x3 + c 

Now y = 0 for x = 0 ⇒ c = 0 

 ∴ y = 0.4x2 – 0.2x3 

3) P = 20 – 2q = f(q) 

 For P =8, 12 = 2q or q = 6. 

∴ Pq = 48 = total expenditure when P = 8.  

∫∫ −=
6

0

6

0

)220()( dqqdqqf  
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6

0

6

0

220 qdqdq   

∫∫ −=
6

0

6

0

220 qdqdq   

[ ] .8436120
2

220
6

0

2
6
0 =−=⎥

⎦

⎤
⎢
⎣

⎡
−=

qq   

∴ Consumer’s surplus .364884)(
8

0

=−=−= ∫ Pqdqqf  

Now, for P = 4, q = 8. 

  CS 6432)220(
8

0

=−−= ∫ dqq  

∴ Consumer’s surplus increases as the price of the commodity falls.  

4) Let A = amount; P = principal, r = rate of interest, n = number of years.  

 Then applying the compound interest formula, 

 A = P (1 + r)n, 

 Here A = 100, r = 0.04, n = 2, P = ? 

 Hence P = 22 )04.1(
100

)04.01(
100

=
+

 

5) Let Y = market value of land 

Y dtrt∫
∞

−=
0

Re  

= 
r
R  (For the steps which you have to do, refer to Example of Economic 

Applications of the Definite Integral). Here R = 1000, r = 0.1 

Y = 000,10
1.0

1000
=  

6) 255 −=− y
dx
dy  

 Here m = –5, k = –25 

 ∴ y = Ae–mx  + 
m
k  becomes  
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 y = Ae5x  + 

5
25

−
− = Ae5x  + 5. 

 Now, y(0) = 6 ⇒ Ae0 + 5 = 6 or A.1 = 1 or A = 1. 

 ∴ y = e5x  + 5, is the answer.  

7) See Section 7.4.1 Example.  

 If θ < 0, the system cannot attain a stable equilibrium, i.e., the system is 
unstable. You reason why. 

8) y(x) = [1 – 0]e–4x + c = e–4x 

9) y(x) = –e–4x + 3  

10) y(x) = 6e5x  

11) The roots of the characteristic equation are 1 and −4. A particular 
integral is y(t) = −3. Thus, the general solution is  

4 3.t tAe Be−+ −  

For the given initial conditions we have A = 6 and B = 1. The general 
solution is unstable. 

12) p
by t
a

=  

13) 2 2
1 2 1 2

5 11 1( )
4 4 2

t ty t A e A te withA andA= + + = =  
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UNIT 8  DIFFERENCE EQUATIONS AND 
APPLICATIONS IN ECONOMIC 
DYNAMICS 

Structure 
8.0 Objectives 
8.1 Introduction 
8.2 Difference Equations in Economics 
8.3 Solving First Order Difference Equations 
 8.3.1 Behaviour of Solutions of First Order Equations 

 8.3.2 Economic Applications of First Order Equations 

8.4 Solving Second Order Difference Equations 
 8.4.1 Homogeneous Equations 

 8.4.2 Behaviour of Solutions of Homogeneous Equations 

 8.4.3 Non-homogeneous Equations 

 8.4.4 An Economic Application of Second Order Non-homogeneous Equation 

8.5 Let Us Sum Up 
8.6 Key Words 
8.7 Some Useful Books 
8.8 Answer or Hints to Check Your Progress  
8.9 Exercises 

8.0 OBJECTIVES 
After going through this unit you should be able to: 

• solve problems of economic dynamics where the time variable takes only 
discrete values.  

8.1 INTRODUCTION 
A difference equation is used to solve the values of an unknown function 
y(x) for different discrete values of x. We obtain a function y(x) such that it 
satisfies the equation for all values of x. In order to understand the process of 
formulation of the difference equation, you may recall the discussion on 
differential equation presented in the preceding unit.  See that difference and 
differential equations are exactly analogous with the only difference that the 
former applies when the independent variable takes only discrete values, 
whereas the latter when it is continuous.  

8.2 DIFFERENCE EQUATIONS IN ECONOMICS 
To get an idea about how difference equations may come up in economics 
consider the case where it is known that the national income y of a particular 
country has been growing at a constant rate g over (say) a ten year period 
starting from some base year.  The rate of growth of y at any period t may be 

represented as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−

−

1

1

t

tt

y
yy

. Note that this is the expression that gives the rate 

of growth of y at a particular point in time. In contrast, you have seen the 
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expression 

y
dttdy )(  when y was treated as a continuous variable. Treating y 

as discrete, we find the numerator as the increment of income in current 
period (period t) over the level attained in the immediately preceding period 
(period t – 1).  The ratio of this to the income yt–1 of the preceding period 
gives the current rate of growth. Since we have said that rates of growth of 
income, g, is constant (i.e., independent of t) over ten year’s interval, it can be 
written as: 

  
1

1

−

−−

t

tt

y
yy

= g, t, = 1, 2, 3, 4, …, 10 

or, yt = (1 + g) yt–1, t = 1, 2, …, 10…………………………………….. (1) 

Equation (1) relates the values of the variable y at two distinct periods t and    
(t – 1). It is an example of a difference equation.  

There is a one-period lag in the values of the relevant variable (yt and yt–1). 
Therefore, it is an example of a first order difference equation. The order of 
a difference equation is determined by the maximum number of periods 
lagged. Some examples of difference equations are given below with the 
orders noted. 

yt-3  –3y t-4= 0      order 1. 

yt = a(yt–1 – yt–2) + 10    order 2. 

log yt + 9 – yt+ 7 (yt+6)3 + 6yt = 0  order 9. 

18 yt+4 – yt = 2t – 55 + 1    order 4. 

3 1 1t t ty ay by c+ + −+ = +      order 4 

Consider a difference equation of the following form: 

y = a1yt–1 + a2yt–2 + …. + anyt–n + b 

where a1, a2, …, an and b are constants.  

This is called an nth order linear constant coefficient difference equation 
(assuming an ≠ 0, otherwise the order will be less than n). It is linear because 
the dependent variable y is not raised to any power and there are no product 
terms, constant coefficients because a1, …, an are constants and do not change 
with t. This equation will be homogeneous if b = 0. If b ≠ 0, then it is non-
homogenous. In this unit, we shall work only with difference equations of this 
special type of orders one and two (n = 1, 2).  

8.3 SOLVING FIRST ORDER DIFFERENCE 
EQUATIONS 

In solving a difference equation, we find a time path y(t) from a given 
initial condition. As pointed out above, a first order difference equation 
takes the form  

1( , )t ty f t y −=  for all t. 
We can solve such an equation by successive calculation,also called 
recursive method , taking the initial value of y (say y0) as given. Thus,  

y1 = F (1, y0)  
y2= F(2, y1) = f(2, f(1, y0)) 
and so on. 
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Note that given any value y0, there exists a unique solution path y1, y2, ....  

However, resorting to calculation of the solution through such a method  
doesn't tell us much about the properties of the solution. We should have a 
general formula, which exists if the form of  f  is simple.  

Let us start with a first-order linear difference equation with constant 
coefficient. It takes the form  

1t t ty ay b−= +  where bt for t = 1, ... are constants.  

When the recursive method is used, you will see a pattern as follows:  

0
1

t
t k

t k
k

y ay a b−

=

= + ∑  ………………………..(2) 

and such an equation has a unique solution path.To check that we 
get the unique solution from the above  formulation, verify that it 
satisfies the original equation.  

Since we have  
1

1
1 0

1

t
t t k

t t k t
k

ay b a a y a b b
−

− −
−

=

⎛ ⎞
+ = + +⎜ ⎟

⎝ ⎠
∑  

1

0
1

t
t t k

k t
k

a y a b b
−

−

=

= + +∑  

0
1

t
t t k

k
k

a y a b−

=

= + ∑  

ty= , 

so that the solution obtained is correct. 

Taking the equation (2), we can examine the special case of  

bk = b for all k = 1……..  

We have  

yt = aty0 + b
1

1

0

t
t

j
a

−
−

=
∑   

Making use of the result of geomtric series summation, the term 
1

1

0

t
t

j
a

−
−

=
∑  may be expanded as 1 + a + a2 + ... + at−1 to give   

1 + a + a2 + ... + an−1 = (1−an)/(1−a). 

if a ≠ 1. Thus we have  

yt = aty0 + b·(1 − at)/(1 − a) 

if a ≠ 1.  

For any given value y0, the unique solution of the difference equation  

yt = ayt−1 + b, 

where a ≠ 1, is  

yt = at(y0 − b/(1 − a)) + b/(1 − a). 
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Equilibrium or Stationary Value  

For a given value y0, the value of yt changes with t. But there may be some 
value of y0 for which yt doesn't change. Such a solution exists if  

y* = b/(1 − a) 

and yt is constant, equal to b/(1 − a).  

We call y* the equilibrium value of y and rewrite the solution as  

yt = at(y0 − y*) + y*. 

Example:  Solve 1 ,t ty yα β+ = + ………………..…..(3) 

where α and β are constants. 

Look for a stationary  or equilibrium value of  yt over time which 
can be repeated for any t consistently satisfying the above equation. 
May be you consider y  as an equilibrium value of yt such that  

,
1

y y

or y

α β
β

β

= +

=
−

  

To understand the above example, we need to remember the 
dynamic multiplier. 

Write  

1t tC yα β−= + ……………………………………..(4) 

Let the investment be fixed at I  for every t so that we have  

1
'

1

( )
t t t t

t

t

Y C I C I
Y I

Y

α β

α β
−

−

= + = +

= + +

= +

 

where ' Iβ β= +  

Use the above relation (4) we have  
'

1t tY Yα β+ = +  

If an equilibrium income Y is found, the solution can be written as  
'

'

1 1

Y Y
I

α β

β β
α α

= +

+
= =

− −

  

Note that 1
1 α−

 is the Keynesian multiplier. 

It is important to remember that we have solved equation (3) for the stationary 
level of yt i.e., y . There is no guarantee that the actual path of y converges to 
y . In case yt approaches y , then 

( ) 0.ty y− →   

If these values of t+1 and yty  hold, we can write  

    t tg y y= − ………………..(5) 
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Since  and yty  satisfy (3), we have 

 1  and
y  =  +       

t ty y
y

α β
α β

+ = +
 

Thus, 

( )1 t = y .ty y yα+ − −  

From (5), 

t+1 1

t+1 1

1

or, g
,  g
, ..................(6)

t t

t

t

t t

g y y
y y

or y y
or g gα

+

+

+

= −

= −
= −
=

 

Since  

1

1

t t

t t

g g
g g

α
α

+

−

=

=
 

. 

. 

. 

. 

1 0g gα=  

Substituting backward,  
2 3

& 1 1 2    ..................t tg g gα α+ − −= =  

we get  
1

1 0

t 0

g
 g g   for  t = 0, 1, 2 ..............

t
t

t

g
or

α
α

−
+ =

=
 

Thus, any difference equation of the form 1t ty yα −=  has a 
solution 0 ,t

ty yα= where 0y  is the value of y  at some chosen initial point. 

General Solution  

Suppose we intend to solve the equation 

1 ................t ty ay c+ + =  (7) 

Its general solution will be consisting of particular solution ( )py  and 

complementary function ( ) g,  i.e., y .c p cy y y= + In this approach, the 

py component represents the inter-temporal equilibrium level of y while that 
of cy  gives the deviations if the time path from that equilibrium.  The solution 
is called general solution due to the presence of an arbitrary constant. In order 
to get a definite solution, we need an initial condition. 

Let us work with complementary function. From (7), we get its reduced from 
as  

1 0t ty ay+ + = ……………………………..(8) 
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It is seen above that t
t oy yα=  is a solution to the difference equation.  In that 

case we have 1
1 0

t
ty a y+
+ =  as well.  We modify this and rewrite 

1.
t+1 and  yt t

ty Ab Ab += =   

    

Substitution of these into (8) gives  
1 0t tAb aAb+ + =  

( ), 0tor Ab b a+ =  

, ( ) 0or b a+ =  

,or b a= −  

We must have b a= −  in the trial solution such that the complementary 
solution can be written as 

( ) .tt
cy Ab A a= = −  

 

Particular solution needs to be recasted such that it is in agreement with the 
general solution. Consider the simplest value of y. If ty has an equilibrium 
value k such that it remains constant overtime, we have ty k=  as well as 

1 .ty k+ =  Substitution of these values to the trial solution gives  

 c,  k =
1+a

kk a c

or

+ =
 

Since the value, k, satisfies the equation, the particular solution can be written 
as 

1p
cy k

a
= =

+
  for  0a ≠  

  

In case 1,a = − however, the particular solution is not defined and some other 
solution of (7) must be searched for. 

 

Substituting k into (7), we get 

  

( )

p .
t

1 .
c,  k =  and  y .

t+1+a

t

t

k t ak c

or C C

+ + =

= =
 

 

The general solution can now be written in one of the following forms: 
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( )t t

    if   a  1
1

,  y  =A+C  if a = 1.

t

tt

t

t

Cy A a
a

or A a C

= − + ≠ −
+

= − + −
  

Notice that the solution above still remains indeterminate.  This is due to the 
presence of arbitrary constant A.  We have to take the help of initial condition 
( )t oy y=  for eliminating it.  Thus, taking t =0, we have 

0

9

1

,  = y
1

Cy A
a

Cor A
a

= +
+

−
+

 

  

The definite solution therefore, becomes  

( )0  for a  1
1 1

,    for 1

t

t

t o t

C Cy y a
a a

or y y C a

⎛ ⎞= − − + ≠ −⎜ ⎟+ +⎝ ⎠
= + = −

  

8.3.1 Behaviour of Solutions of First Order Equations 
The solution of a difference equation gives an expression for the relevant 
variable as an explicit function of time. In other words, a time path of the 
variable is obtained. To investigate the nature of this time path of a solution of 
the first order equation, we write the solution for a ≠ 1. 

The behavior of the solution path depends on the value of a.  

⏐a⏐ < 1  

yt converges to y* and the solution is stable. There are two 
subcases:  

0 < a < 1 , 

Monotonic convergence.  

−1 < a < 0  

Damped oscillations.  

⏐a⏐ > 1  

Divergence:  

a > 1  

Explosion.  

a < −1  

Explosive oscillations.  

To understand these features see Figure 8.1. 
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Ο

(3) –1<a<0

at

t

B

Ο

(1) a>1

at

t

B

Ο

(2) 0<a<1

at

t

B

Ο

(4) a < -1

at

t

B

Ο

at

t

B

(5) a = –1

Figure 8.1
In short,  

a   > 1 time path explodes (diverges) 

a   < 1 time path converges 

  a > 0 time path non-oscillating 

  a < 0 time path oscillating. 

Thus, the condition for stability is a   < 1. 

The different cases are shown in Figure 8.1.  

 

Fig. 8.1 
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We consider three applications of the type of equations discussed in the 
previous section. The first is an analysis one sector Harrod-Domar model 
while the second is of price dynamics. The last one deals with the amortisation 
problem of hire purchase of consumer durables.  

a) Harrod-Domar One Sector Model  

An economy produces one good Q with capital K through a production 
function Qt = bKt, where b = constant productivity of capital. Accumulation of 
capital between t and t+1 is given by  

It = Kt+1 – Kt, where It = investment in t.  

Saving St = sQt. 

Equilibrium level of income is determined at the equality of savings and 
investment. So,  

St = It  

or, sQt = Kt+1 – Kt. 

Since Qt = bKt, we have sbKt = Kt–1 – Kt 

or, Kt+1 = (1 + sb)Kt, a homogeneous first order linear difference equation. 
Therefore, solution to this equation is given by 

Kt = (1 + sb)tK0. 

Since b is productivity of capital in the model, we write
b
1  = capital output 

ratio = v (say).  

Now Kt

t

v
s

⎟
⎠
⎞

⎜
⎝
⎛ += 1  K0 and  

Qt

t

v
s

⎟
⎠
⎞

⎜
⎝
⎛ += 1  Q0 

Remember that 
v
s  = warranted rate of growth and constituted by two basic 

parameters s and v.  We can find out the output growth rate given s and v.  

b) The Cobweb Model  

The essential feature of this model is that production or supply responds to 
price with a one-period lag. This type of lagged supply response is often 
observed for agricultural products.  

We assume: 1) The market demand and supply functions are linear and do not 
change over time, 2) demand in any period t responds to price prevailing in 
the same period t, but supply in t depends on price that prevailed in the last 
period, (t – 1) and 3) the market is competitive in the sense that the price that 
prevails in each period is the price that equates demand and supply. Thus, the 
model can be set out as consisting of the following equations.  

Dt = a – b Pt; a, b > 0  

St = α – β Pt – 1; α, β > 0, α < a 

Dt = St for all t.  
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The first equation gives us the simple demand curve in period t. The second 
displays the lag in supply. Supply in t, St, is determined by prices of the 
immediately preceding period, Pt – 1. The last equation is the condition of 
market clearing in each period. The three equations together yield a first order 
constant coefficient non-homogeneous difference equation in price.  

Pt = ⎟
⎠
⎞

⎜
⎝
⎛−

b
β Pt – 1 + 

b
a α−       … (9) 

With a, b α, β known, a specification of the initial price P0 allows us to solve 
the equation as: 

Pt = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−
β
α

b
aP0  

t

b
⎟
⎠
⎞

⎜
⎝
⎛−

β   + 
β
α

+
−

b
a     … (10) 

From our previous discussion, it is clear that the behaviour of P over time 

depends crucially on the term ⎟
⎠
⎞

⎜
⎝
⎛−

b
β .  

Since this term is negative (b, β > 0) the time path will always be oscillatory. 

Let us denote the constant 
β
α

+
−

b
a  by P*. 

 Then  

⎟
⎠
⎞

⎜
⎝
⎛

b
β  > 1  Price diverges 

⎟
⎠
⎞

⎜
⎝
⎛

b
β  = 1  Price oscillates uniformly 

⎟
⎠
⎞

⎜
⎝
⎛

b
β  < 1  Price converges to P*. 

Only in the last case (Pt approaches P* as t increases), the system is stable. 

Thus, the condition for stability is ⎟
⎠
⎞

⎜
⎝
⎛

b
β  < 1. Since graphically ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β
1 is the 

slope of the supply curve and ⎟
⎠
⎞

⎜
⎝
⎛

b
1  that of the demand curve in absolute 

value, the stability condition states that the slope of the supply curve must be 
steeper than the absolute value of the slope of the demand curve.  

At this point, we pause to note the significance of the value 
β
α

+
−

b
a . This is 

the constant value of price that is a solution of the equation (9). To check, 
substitute Pt = Pt – 1 = P* (a constant) in (9).  

P*  = ⎟
⎠
⎞

⎜
⎝
⎛−

b
β P* + 

b
a α−  

or, P*  = 
β
α

+
−

b
a . 
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β
α

+
−

b
a is a solution of (9). This type of constant solution is called 

Stationary solution.  The price P* may be called the equilibrium price 
because it equates demand and supply and stays unchanged over time.  

Example: We want to investigate the behaviour of price in a market with the 
demand and supply functions:  

Dt = 86 – 0.8 Pt   

St = – 10 + 0.2 Pt – 1 

Assuming market clearing in each period (Dt = St) we have 

 (–0.8) Pt = 0.2 Pt – 1 – 96 

or, Pt = (–0.25)Pt – 1 + 120 

The solution is  

Pt = 
25.01

120)25.0(
25.01

120  0 +
+−⎟

⎠
⎞

⎜
⎝
⎛

+
− tP  

= (P0 – 96) (–0.25)t + 96 

Since 0.25 - = 0.25 < 1, the time path of P is oscillating but converges. The 
market is stable and with the passage of time price approaches the equilibrium 
value 96. 

c) The Amortisation Problem  

We are all familiar with the practice of hire purchase or purchase by 
instalments of consumer durables like refrigerators, cars or T.V. sets. The 
buyer pays a part of the price at the time of purchase (the down payment) and 
pays the rest in monthly or annual instalments over a specified period. 
Because the payments are spread over a period of time, an interest cost is 
included in the value of instalments. Amortisation is the term associated with 
this method of repaying an initial debt plus interest charges by a series of 
payments of equal magnitude at equal intervals.  

Let the value of the article purchased by V and P the down payment. Then the 
initial debt of the buyer is D0 = V – P.  The contract states that the debt, D0 is 
to be paid off over T periods. The rate of interest is r (100 r%). The question 
we are interested in is: how is the magnitude of periodic instalment to be 
determined? 

Let us denote the value of the instalment (still unknown) by B. This value 
stays constant over time. The outstanding debt Dt at the end of the period t 
obeys the equation 

Dt = (1 + r)Dt –1 – B   ……………………….….(11) 

This simply says that to find the outstanding debt at the end of the tth period 
you take the debt outstanding at the end of the previous ((t – 1)th) period Dt –1, 
add the interest charge on it, rDt –1, but subtract the payment B made in that 
period. Given the initial debt of D0 the solution of (11) is  

Dt = ⎟
⎠
⎞

⎜
⎝
⎛ +

r
BD0 (1 + r)t +

r
B     …. (12)  

The value of B is to be selected so that the debt disappears at the end of period 
T, that is, Dt = 0. From (12) we get 
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⎟
⎠
⎞

⎜
⎝
⎛ +

r
BD0 (1 + r)t +

r
B = 0       

or, B = Tr
rD

−+− )1(1
 0  

Thus, we have the exact relationship between the magnitude of the periodic 
payment and the rate of interest, the magnitude of the initial debt and the time 
horizon of the contract. The expression: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +− −

r
r T)1(1  

is referred to as the amortisation factor and value of this factor has been 
extensively tabulated for different values of r and T.  

Check Your Progress 1 

1) What is a difference equation? Distinguish it from a differential equation.  

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

2) Discuss the nature of the following time paths 

i) 3 1t
ty = +        (ii) 15 3

10

t

ty ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

3) Suppose you find the following the path of y. 

yt = Aat + B; A < 0, B > 0. 

Draw the different cases of the behaviour of yt for different values of a.  

4) Solve the following equations: 

i) 1
1 6
3t ty y+ − =  for 0 1y =  

ii) 1 3t ty y+ − =  for 0 5y =  

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 
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EQUATIONS 
A general second-order difference equation which we have already 
mentioned at begniging outset of this unit takes the form  

yt+2 =  f (t, yt, yt+1). 

Just as in the case of first-order equation, a second-order equation will 
have a unique solution and can be derived by successive (recursive) 
calculation. We will show that given y0 and y1 there exists a uniquely 
determined value of yt for all t ≥ 2. Note that for a second-order equation 
we need two starting values, y0 and y1, in place of one taken in the first 
order counterpart. 

8.4.1 Homogeneous Equations 
Consider the following second order constant coefficient equation 

2 1 0t t ty ay by+ ++ + =       …. (13) 

We need to find two solutions of the equation above.   

If we make a guess that the solution takes the form ut = mt 

 In order for ut to be a solution, we must have  

mt(m2 + am + b) = 0 

or, if m ≠ 0,  

m2 + am + b = 0. 

This is called the characteristic (or auxiliary) equation of the difference 
equation and its solutions are  

−(1/2)a ± √((1/4)a2 − b). 

8.4.2 Behaviour of Solutions of Homogeneous Equations 
Looking at the component √((1/4)a2 − b), we distinguish three cases:  

i) Distinct real roots  

If a2 > 4b, the characteristic equation has distinct real roots, and the 
general solution of the homogeneous equation is  

1 2 ,t tAm Bm+  

where 1m and 2m are the two roots.  

ii) Repeated real root  

If a2 = 4b, then the characteristic equation has a single root, and the 
general solution of the homogeneous equation is  

(A + Bt)mt, 

where m = −(1/2)a is the root.  

ii) Complex roots  

If a2 < 4b, then the characteristic equation has complex roots, and the 
general solution of the homogeneous equation is  

Art cos(θt + ω), 
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where A and ω are constants, r = √b, and cos θ = −a/(2√b), or, alternatively,  

C1rt cos(θt) + C2rt sin(θt), 

where C1 = A cos ω and C2 = −A sin ω (using the formula that cos(x+y) = 
(cos x)(cos y) − (sin x)(sin y).  

When the characteristic equation has complex root, the solution oscillates. 
Art is the amplitude (which depends on the initial conditions) at time t, and 
r is growth factor. θ/2π is the frequency of the oscillations and ω is the 
phase (which depends on the initial conditions).  

If ⏐r⏐ < 1 then the oscillations are damped; if ⏐r⏐ > 1 then they are 
explosive. 

Stability 

We say that a system of differential equations is stable if its long-run 
behavior is not sensitive to the initial conditions.  

Consider the second-order equation  

2 1 .t t t ty ay by c+ ++ + =  

Write the general solution as  

yt = Aut + Bvt + ut*, 

where A and B are determined by the initial conditions.  

This solution is stable if the first two terms approach 0 as t → ∞, for all 
values of A and B. In this case, for any initial conditions, the solution of the 
equation approaches the particular solution ut*. If the first two terms 
approach zero for all A and B, then ut and vt must approach zero. You can 
take A = 1 and B = 0 to see that ut approaches zero. On the other hand, take 
take A = 0 and B = 1 to see that vt approaches 0. A necessary and sufficient 
condition for this to be so is that the moduli of the roots of the characteristic 
equation be both less than 1. Note that the modulus of a complex number 
α + βi is +√(α2 + β2), which is the absolute value of number if the number is 
real.  

There are two cases:  

• If the characteristic equation has complex roots then the modulus of 
each root is √b (the roots are α ± βi, where α = −a/2 and β = √(b − 
(1/4)a2)). So for stability need b < 1.  

• If the characteristic equation has real roots then the modulus of each 
root is its absolute value. So for stability we need the absolute values of 
each root to be less than 1, or ⏐−a/2 + √(a2/4 − b)⏐ < 1 and ⏐−a/2 − 
√(a2/4 − b)⏐ < 1.  

8.4.3 Non-homogeneous Equations 

To find the general solution of the original equation  

yt+2 + ayt+1 + byt = ct 

we need to find one of its solutions. Suppose that b ≠ 0.  

The form of a solution depends on ct.  

Suppose that ct = c for all t. Then yt = C is a solution if C = c/(1 + a + b) and 
if 1 + a + b ≠ 0;  
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if 1 + a + b = 0 then try yt = Ct; if that does not yield a solution, we have to 
try yt = Ct2.  

8.4.4 An Economic Application of Second Order Non-
homogeneous Equation 

We discuss now an economic example of a second order non-homogeneous 
equation. This is Samuelson’s model of interaction between the multiplier and 
the accelerator. Consider the following macro-economic equations: 

Ct = C0 + cYt –1, 0 < c < 1. 

It = I0 + v(Ct – Ct–1); v > 0. 

Yt = Ct + It 

The symbols Y, C, I stand for national income, consumption and investment 
respectively. The first equation is the consumption function with a one-period 
lag; the second is the investment function of the accelerator type. C0 + I0 are 
the levels of autonomous consumption and investment. The marginal 
propensity to consume c and the accelerator coefficient v are assumed to be 
constant. The final equation is the condition of macro balance. The three 
equations together generate the following difference equation in Y 

Yt – c(1 + v) Yt –1 + cvYt –2 = C0 + I0    … (15) 

The characteristic equation for the homogeneous part is  

m2 – c(1 + v) m + cv = 0  

The roots are 

m1, m2 = 
2
1  (c(1 + v) )4)1( 22 cvvc −+±     … (16) 

Both m1 and m2 are positive because from the theory of quadratic equations 
we know m1 + m2 = c(1 + v) > 0 and m1m2 = cv > 0. Since c(1 + v) – cv ≠ 1, 

the particular solution is 
c
IC

−
+

1
00 . Three types of solution are possible 

depending on the values of c and v.  

1) c2(1 + v)2 > 4cv  

      or, c(1+v)2 > 4v, the roots are real and distinct.  

 Here,  

 Yt = A1
tm1 + A2

tm2 + 
c
IC

−
+

1
00 ; A1, A2 ≠ 0 and constants  

2) c(1+v)2 = 4v, the roots are real and equal with value 
2
1 c(1+v). In this 

case 

 Yt = (A1 + A2t) 
2(1 )( )

2
c v+  + 

c
IC

−
+

1
00 ;  

3) c(1+v)2 < 4v, the roots are complex. From (16) we see that the roots are 
of the form (a ± ib) with  

a = 
2
1 c(1+v) 
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b = 

2
1 22 )1(4 vccv +−  

( cvvc 4)1( 22 −+Θ = ( )222 )1(4 vccvi +− = i 22 )1(4 vccv +− = ib) 

The modulus of the roots 

r = 22 ba + = cv  

The solution is  

Yt = ( cv )2 (A1 cos(tθ) + A2 sin (tθ)) + 
c
IC

−
+

1
00  

where θ = tan–1 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
+−
)1(

)1(4 22

vc
vccv

 

In this case, we have a cyclical time path of national income Y. If cv  < 1, 
then ( cv )t will tend to zero as t increases and Yt will approach the value 

c
IC

−
+

1
00 . 

Thus, the condition for stability (damped oscillations in Y) is cv  < 1, that is, 
the product of the marginal propensity to consume and the accelerator 
coefficient should be less than unity. 

Check Your Progress 2 

1) Solve the following difference equations and determine whether the 
solution paths are convergent or divergent, oscillating or not.  

a) yt+2 + 3yt+1 − (7/4)yt = 9.  

b) yt+2 − 2yt+1 + 2yt = 1.  

c) yt+2 − yt+1 + (1/4)yt = 2.  

d) yt+2 + 2yt+1 + yt = 9·2t.  

e) yt+2 − 3yt+1 + 2yt = 3·5t + sin((1/2)πt). 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

2) Find the roots of the equation 

 yt = ayt –1 + byt –2 

Examine when the roots are 

1) real, unequal 

2) real, equal 

3) complex 

What is the auxiliary or the characteristic equation of the equation above? 
What are the final forms of general solution of the equation in each case? 
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 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

3) Find the solutions of the equations: 

a) yt + 4yt – 2 = 0, y = 12, 11 at t = 0, 1 respectively. 

b)  yt = 2yt – 2 – 
3
4 yt – 2 , y = 0, 1 at t = 0, 1 respectively. 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

 ……………………………………………………………………………… 

8.5 LET US SUM UP 
In continuation with the theme on solving economic problems in a dynamic 
set up, the present unit took up ‘time’ as a discrete independent variable and 
examined tool of simple difference equations. In the process, we considered 
the solutions of first and second order linear difference equations covering   
homogeneous and non-homogeneous cases. To see the applications of these 
equations to economic problems, the time path of adjustment of macro-
economic variable – national income – in case of the simple Keynesian 
multiplier model and Samuelson’s multiplier-accelerator interaction model 
were discussed. We also examined the time path of adjustment of the price 
variable and looked into the conditions of dynamic stability of the different 
systems – i.e., whether over time, the economic variables – price or national 
income – converge to a stable equilibrium. Finally, the conditions when the 
systems become dynamically explosive – i.e., the variables move further and 
further away from the equilibrium value were examined.  

8.6 KEY WORDS 
Amortisation: It is the term associated with the method of repaying an initial 
debt plus interest charges by a series of payments of equal magnitude at equal 
intervals.  

Cobweb Model: A model where production or supply responds to price with 
a one-period lag. This model is often used to analyse the demand-supply 
mechanism for markets of agricultural commodities.  

Constant Coefficient Difference Equation: A difference equation has 
constant coefficient if the coefficients ai’s associated with the y values are 
constant and do not change over time.  

Difference Equation: A difference equation is an equation involving the 
values of an unknown function y(x) for different values of x. The independent 
variable – time in problems of economic dynamics – takes only discrete 
values. The form of the equation is, yt = a1yt–1 + a2yt–2 + … + anyn–1 + b, where 
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a1, a2, …., an and b are constants, is an example of an n-th order linear, 
constant coefficient, difference equation.  

Homogeneous Difference Equation: A difference equation is homogeneous 
if the constant term b is zero.  

Linear Difference Equation: A difference equation is linear if (i) the 
dependent variable y is not raised to any power and (ii) there are no product 
terms.  

Non-homogeneous Difference Equation: A difference equation is non-
homogeneous if the constant term, b, is non-zero. 

Order of a Difference Equation: It is determined by the maximum number 
of periods lagged. 
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York. Chapters 9, 10 and 11.  

Chiang, Alpha C. 1984, Fundamental Methods of Mathematical Economics 
(Third Edition): Mc-Graw Hill International Edition, New Delhi.  

8.8 ANSWER OR HINTS TO CHECK YOUR 
PROGRESS  

Check Your Progress 1 

1) See Section 8.1 

2) i) Non-oscillatory; divergent 

ii) Oscillatory; convergent 

3) Fig. 8.1 shows the time path for A > 0. Draw the corresponding figures 
for A < 0.  

4) i) 18 9
3

t

ty ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 ; ii) 12 4
4

t

ty −⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

Check Your Progress 2 

1) 

a) 1 2
1 7A 4
2 2

t t

A −⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. Nonconvergent oscillations.  

b) ( ) 1 22 cos sin 1
4 4

t
A t A tπ π⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
.Nonconvergent oscillation.  

c) 1 2
1 1A 8.
2 2

t t

A t⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Convergent, non-oscillating.  

d) The characteristic equation is 2 22 1 ( 1) 0m m m+ + = + = , which has 
a double root of −1. So the general solution of the homogeneous 
equation is ( )1 2 ( 1) .t

ty C C t= + −  A particular solution is obtained    
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tu A= which yields A = 1. So the general solution of 

the inhomogeneous equation is ( )( )1 2 1 2 .t t
ty C C t= + − +   

e) By using the method of undetermined coefficients the constants A, 
B, and C in the particular solution 

* 5 cos sin ,
2 2

tu A B t C tπ π⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

we obtain A = 1/4, B = 3/10, 

and C = 1/10. So the general solution to the equation is 

1 2
1 3 12 5 cos sin
4 10 2 10 2

t t
ty C C t tπ π⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
. 

2) See Section 8.4 and answer. 

Note that in the text yt = ayt –1 + byt –1   

Here you have a slightly changed equation.  

3) a) yt = 2t .
4

sin
2

11
2

cos12 ⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛

⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ππ tt  

b) yt = )sin(
sin 2

3
3

2 θ
θ

t
t

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

where θ = tan-1 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3
1  

8.9 EXERCISES 
1) Investigate the behaviour of price in a market, i.e., the stability of a 

system with demand and supply functions: 

 a) Dt = 86 – 0.8 Pt 

  St = –10 + 0.8 Pt –1  

 b) Dt = 86 – 0.8 Pt 

2) What is amortisation? Derive the exact relationship between the 
magnitude of the periodic payment B and the rate of interest r, the 
magnitude of the initial debt D0 and the time horizon of the contract T. 

3) Establish the stability condition of Samuelson’s multiplier-accelerator 
interaction model. 

4) Find the time path represented by the equation 42 9
5

t

ty ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

. 

 5) Find the solution of the equation 1
1 4 5t ty y+ + =  for 0 2y = . 

5) The demand and supply for cobweb model is given as 

19 6dt tQ P= −  and 16 5st tQ P−= − . Find the intertemporal equilibrium 
price and comment on the stability of the equilibrium. 

Answer or Hints to Exercises 

1) Note that for the Cobweb model  

Dt = a – b Pt a, b > 0 

  St = α + βPt –1 α, β > 0, α < 0 
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 Dt = St for all t.  

A specification of the initial price P0 allows us to solve the equation. 

 Pt = 
b

aP
b t

αβ −
+⎟

⎠
⎞

⎜
⎝
⎛− −1  

 as Pt = 
β
αβ

β
α

+
−

+⎟
⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

−
b
a

bb
aP

t

0   

 or, Pt = ( )
β
αβ

+
−

=+⎟
⎠
⎞

⎜
⎝
⎛−−

b
aPP

b
PP

t
***

0 ;  

If 
t

b
⎟
⎠
⎞

⎜
⎝
⎛−

β  → 0 as t → ∞, Pt → P* , the equilibrium value. 

This is possible if and only if 
b
β < 1 

i.e., β < b. 

a) β = 0.8, b = 0.8. Hence β = b.  

This results in uniform oscillation, as 
β
1 = 

b
1 . 

or, the slope of the supply curve = the absolute slope of the demand curve.  

b)  b = 0.8, β = 0.9 

Hence 
b
β = 1 

or, β > b. 

or, 
β
1 <

b
1 . 

 i.e., the slope of the supply curve is less than the absolute value of the slope 
of the demand curve. 

Hence, price diverges further and further away from the equilibrium and you 
come across an explosive and oscillatory situation.  

c)  B = 0.9, β = 0.8 

  
b
β  < 1 implies damped oscillation and the system is stable.  

 You should draw diagrams in each case and satisfy yourself.  

2) See Example (b) in Sub-section 8.3.4. 

3) Sub-section 8.4.4 and answer. 

4) Since 4 0,
5

b = − <  the time path is oscillatory. As 4 1
5

b = < , the 

oscillation is damped and it converges to equilibrium level of 9. 

5) ( )2 4.t
ty = +1

4– –  

6) 2p = ; discuss on uniform oscillation. 


